Highly Stereoselective Radical Reduction of α-Bromo-α-fluoro-β-hydroxy Esters with Tributyltin Hydride Leading to *threo*-α-Fluoro-β-hydroxy Esters

Kazuhide Mima, Takashi Ishihara,* Saki Kuwahata, Tsutomu Konno, and Hiroki Yamanaka

Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585

(Received November 1, 2001; CL-011095)

 α -Bromo- α -fluoro- β -hydroxy esters, prepared as isomeric mixtures by the zinc-mediated coupling reaction of dibromo-fluoroacetate with aldehydes at -20 °C, were successively treated with trimethylaluminium at -15 °C for 0.5 h and with tributyltin hydride in the presence of a catalytic amount of triethylborane at -15 °C for 4 h or at -78 °C for 6 h to give preferentially the *threo*-isomers of the corresponding α -fluoro- β -hydroxy esters in good yields.

 α -Fluoro- β -hydroxy acid derivatives are very important and fundamental compounds for preparing a variety of regioselectively monofluorinated natural substances, which attract much attention in biological chemistry due to frequent occurrence of their unique bioactivities.¹ It is general for the access to such fluorinated β -hydroxy acid derivatives to utilize either the aldol reaction of the metal enolates of monofluoroacetic acid esters^{2,3} and amides^{2,4} or the Reformatsky reaction of bromofluoroacetate,⁵ but these reactions suffer the lack of stereoselectivity. Therefore, the development of a stereocontrolled route to the synthesis of α -fluoro- β -hydroxy acid derivatives is strongly required.

In close connection with our recent success in the zincmediated coupling reaction between ethyl dibromofluoroacetate and various aldehydes leading efficiently to α -brominated α fluoro- β -hydroxy esters 1,⁶ we set out to investigate the radical reduction⁷ of such α -bromo esters 1 with hydrogen transfer reagents, under consideration that it could constitute a stereoselective synthetic method for the α -fluoro- β -hydroxy esters.

This communication discloses the preliminary results demonstrating that the sequential reaction of 1 with trimethylaluminium and with tributyltin hydride in the presence of a catalytic amount of triethylborane proceeds with high levels of diastereoselection, preferentially yielding the *threo*-isomers of the reduction products 2. To our best knowledge, the present reaction provides us with the first highly stereoselective means for constructing an α -monofluoro- β -hydroxy ester moiety of interest.

First, the reaction of 1a, readily prepared as an isomeric

mixture from dibromofluoroacetate and benzaldehyde,⁶ with tributyltin hydride (Bu₃SnH) (2 equiv) was carried out in the presence of 10 mol% of triethylborane (Et₃B) in toluene at -78°C for 6 h. ¹⁹F NMR of the crude products indicated the formation of $2a^8$ consisting of 51:49 threo- and erythroisomers^{9,10} (Entry 1). When the β -hydroxy ester **1a** was allowed to react with an organometallic reagent, followed by treating with Bu₃SnH and a catalytic amount of Et₃B at -78 °C for 6 h, the isomer distribution of 2a was improved definitely (Entries 2-6). Out of the metallic reagents examined, such as butyllithium, diethylzinc, diisobutylaluminium hydride, triethylaluminium (Et₃Al), and trimethylaluminium (Me₃Al), the latter two reagents gave better results. Thus, the reaction of an aluminium β -alkoxy ester, generated in situ from 1a and Et₃Al or Me₃Al, with Bu₃SnH and catalytic Et_3B at $-78\,^\circ\text{C}$ for 6h occurred with good stereoselectivity, leading to the threo- and erythro-isomers of 2a with a ratio of 89 : 11 or 95 : 5, respectively, in good yield (Entries 5 and 6). It should be noted that even on conducting the reaction at -15 °C for 4 h, high stereoselectivity could be realized (Entry 7). Dichloromethane was employed as the solvent comparable to toluene (Entry 8). However, tetrahydrofuran was not a suitable solvent: The reaction of 1a using Me₃Al in THF under similar conditions proceeded in a nearly nonstereoselective fashion (Entry 9).

The procedure for the reaction of **1a** is typical. To a toluene solution of **1a** (1.0 equiv) was dropwise added Me₃Al (1 M = $1 \mod dm^{-3}$ in hexane, 1.1 equiv) at $-15 \degree$ C under an argon atmosphere. After stirring for 0.5 h, Bu₃SnH (2.0 equiv) and Et₃B (1 M in hexane, 0.1 equiv) were successively added to the reaction mixture and the whole was stirred at $-15\degree$ C for 4 h. A solution of 4-*t*-butyl-2,6-dimethylphenol (0.1 M in toluene, 0.5 mL) was added to the reaction mixture. After stirring at that temperature for 15 min, the mixture was poured into a cold NH₄Cl and 10% HCl mixed solution. The resultant mixture was extracted with ether, followed by drying over anhydrous Na₂SO₄. Evaporation of the solvents and column chromatography on silica gel using hexane-AcOEt gave analytically pure product **2a** in 84% yield.

Table 1 summarizes the results of the reactions of other β -hydroxy esters 1 bearing various substituents R. Regardless of the types of R, such as aryl, *n*-alkyl, and branched alkyl substituents, the reactions of 1 under the conditions described above took place in a highly stereoselective manner, except for the reaction of 1d (Entry 12), to afford the *threo*-isomers of 2^8 preferentially in good yields (Entries 10, 11, 13–16). Of much significance is that the stereoselectivity of the reaction did not depend appreciably on the isomer ratios of the starting esters 1 employed (Entries 17-20).

Table 1. Reduction of α -bromo- α -fluoro- β -hydroxy esters 1 with Bu₃SnH/cat. Et₃B

β -Hydroxy ester 1					Temp.	Time	Yield ^b /%		Isomer ratio ^c of 2
Entry	R	threo : erythro ^a	R'M	Solvent	/°C	/h	of 2		threo : erythro
1	Ph	41:59	none	PhCH ₃	-78	6	2a	85	51:49
2	Ph	41:59	BuLi	PhCH ₃	-78	6	2a	57	58:42
3	Ph	41:59	Et_2Zn	PhCH ₃	-78	6	2a	80	57:43
4	Ph	41:59	<i>i</i> -Bu ₂ AlH	PhCH ₃	-78	6	2a	69	76:24
5	Ph	39:61	Et ₃ Al	PhCH ₃	-78	6	2a	77	89:11
6	Ph	39:61	Me ₃ Al	PhCH ₃	-78	6	2a	80	95 : 5
7	Ph	39:61	Me ₃ Al	PhCH ₃	-15	4	2a	84	95 : 5
8	Ph	43:57	Me ₃ Al	CH_2Cl_2	-15	4	2a	80	95 : 5
9	Ph	43:57	Me ₃ Al	THF	-15	4	2a	80	53:47
10	$p-MeC_6H_4$	40:60	Me ₃ Al	PhCH ₃	-15	4	2b	95	93:7
11	p-MeOC ₆ H ₄	49:51	Me ₃ Al	PhCH ₃	-15	4	2c	89	94:6
12	(E)-MeCH = CH	43:57	Me ₃ Al	PhCH ₃	-15	4	2d	73	86:14
13	Pr	40:60	Me ₃ Al	PhCH ₃	-15	4	2e	75	91:9
14	Hex	54:46	Me ₃ Al	PhCH ₃	-15	4	2f	72	90:10
15	<i>i</i> -Pr	37:63	Me ₃ Al	PhCH ₃	-15	4	2g	68	93:7
16	<i>t</i> -Bu	54:46	Me ₃ Al	PhCH ₃	-15	4	2h	66	96:4
17	Pr	100:0	Me ₃ Al	PhCH ₃	-15	4	2e	86	91:9
18	Pr	100:0	Me ₃ Al	PhCH ₃	-78	6	2e	75	95 : 5
19	Pr	0:100	Me ₃ Al	PhCH ₃	-15	4	2e	73	90:10
20	Pr	0:100	Me ₃ Al	PhCH ₃	-78	6	2e	81	89:11

^aMeasured by ¹⁹F NMR. ^bThe yields refer to pure products isolated by column chromatography on silica gel. ^cDetermined by ¹⁹F NMR of the crude products prior to isolation.

The stereoselection observed in the present reaction may be explained as follows. Thus, the α -bromo- β -hydroxy ester **1** is converted by the action of Me₃Al into the aluminium β -alkoxy ester, probably being chelated intramolecularly, which undergoes a bromine abstraction with tributylstannyl radical to generate a chair-like chelated α -ester radical.^{7e-g} This radical may be reduced with Bu₃SnH more easily from its less hindered *re*-face, leading preferentially to the *threo*-isomer of the product **2**.

In summary, we have developed a new, efficient, and stereoselective approach to the *threo*-isomers of α -fluoro- β -hydroxy esters **2** through the radical reduction of α -bromo- α -fluoro- β hydroxy esters **1**, prepared easily by the Reformatsky reaction of dibromofluoroacetate with aldehydes.

This work was supported by a Grant-in-Aid for Scientific Research (No. 11650893) from the Ministry of Education, Science, Sports, and Culture, Japan.

References and Notes

- "Biomedical Frontiers of Fluorine Chemistry," ed. by I. Ojima, J. R. McCarthy, and J. T. Welch, American Chemical Society, Washington, D.C. (1996); J. T. Welch and S. Eswarakrishnan, "Fluorine in Bioorganic Chemistry," John Wiley & Sons, New York (1991); J. T. Welch, *Tetrahedron*, 43, 3123 (1987); R. Filler and Y. Kobayashi, "Biomedical Aspects of Fluorine Chemistry," Kodansha & Elsevier Biomedical, Tokyo (1982).
- 2 T. Ishihara, J. Synth. Org. Chem. Jpn., 50, 347 (1992), and references cited therein; J. T. Welch and S. Eswarakrishnan, "Fluorine-Containing Molecules; Structure, Reactivity, Synthesis, and Applications," ed. by J. F. Liebman, A. Greenberg, and W. R. Dolbier, Jr., VCH Publishers,

New York (1988), Chap. 7, pp 123-147.

- 3 J. T. Welch and R. W. Herbert, J. Org. Chem., 55, 4782 (1990); J. T. Welch and J. S. Plummer, Synth. Commun., 19, 1081 (1989).
- 4 J. T. Welch and S. Eswarakrishnan, J. Org. Chem., 50, 5403 (1985).
- 5 S. Brandänge, O. Dahlman, and L. Mörch, J. Am. Chem. Soc., 103, 4452 (1981); E. T. McBee, O. R. Pierce, and D. L. Christman, J. Am. Chem. Soc., 77, 1581 (1955).
- 6 T. Ishihara, T. Matsuda, K. Imura, H. Matsui, and H. Yamanaka, *Chem. Lett.*, **1994**, 2167.
- 7 For selected general reviews, see: a) D. P. Curran, N. A. Porter, and B. Giese, "Stereochemistry of Radical Reactions: Concepts, Guidelines, and Synthetic Applications," VCH publishers, New York (1996). b) W. Smadja, Synlett, **1994**, 1. c) N. A. Porter, B. Giese, and P. D. Curran, Acc. Chem. Res., **24**, 296 (1991). d) B. Giese, Angew. Chem., Int. Ed. Engl., **28**, 969 (1989). For a selected review and papers dealing with stereocontrolled reactions using Lewis acids, see: e) P. Renaud and M. Gerster, Angew. Chem., Int. Ed. Engl., **37**, 2563 (1998). f) Y. Guindon and J. Rancourt, J. Org. Chem., **63**, 6554 (1998). g) Y. Guindon, Z. Liu, and G. Jung, J. Am. Chem. Soc., **119**, 9289 (1997). h) C. Ha, O. M. Musa, F. N. Martinez, and M. Newcomb, J. Org. Chem., **62**, 2704 (1997).
- 8 Spectroscopic and analytical data of the products 2 were in good accord with the assigned structures.
- 9 The relative stereochemical nomenclature proposed by Noyori *et al.* is applied in this work. See: R. Noyori, I. Ishida, and J. Sakata, *J. Am. Chem. Soc.*, **105**, 1598 (1983).
- 10 The configurational assignment of the products 2 was made on the basis of the relative magnitudes of vicinal H-F couplings¹¹ for acetonides¹² prepared by the reduction of 2 with lithium aluminium deuteride followed by acetalization with 2,2-dimethoxypropane.
- T. Ishihara, M. Kuroboshi, K. Yamaguchi, and Y. Okada, J. Org. Chem., 55, 3107 (1990). T. Yamazaki, T. Yamamoto, and T. Kitazume, J. Org. Chem., 54, 83 (1989).
- 12 For instance, 4,4-dideuterio-5-fluoro-2,2-dimethyl-6-phenyl-1,3-dioxane derived from **2a**: For the *threo*-isomer, ¹H NMR (300 MHz, CDCl₃) $\delta = 1.53$ (s, 3H), 1.56 (s, 3H), 4.38 (dd, J = 47.2, 1.2 Hz, 1H), 4.96 (d, J = 31.0 Hz, 1H), 7.25–7.46 (m, 5H); ¹⁹F NMR (84.1 MHz, CDCl₃, CFCl₃) $\delta = -204.3$ (dd, J = 47.2, 1.2 Hz, 1F). For the *erythro*-isomer, ¹H NMR (300 MHz, CDCl₃) $\delta = 1.48$ (s, 3H), 1.58 (s, 3H), 4.50 (dd, J = 50.2, 8.7 Hz, 1H), 4.78 (dd, J = 8.7, 8.7 Hz, 1H), 7.28–7.47 (m, 5H); ¹⁹F NMR (84.1 MHz, CDCl₃) $\delta = -194.7$ (dd, J = 50.2, 8.7 Hz, 1F).